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l. Introduction.
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_ In the last few years, there has been an increasing interest in
the theory of differential equations with retarded arguments or systems
in which the rgte of changeof a system may depend upon its past history.

This is partially due to the fact that such equations arise in a natural

manner in certain types of control problems. Much of the recent literature

7 (CATEGORY)

has been devoted to the extension of known results for ordinary differential

equations to differential equations with retarded arguments., The present

paper is ancther step in this direction.

More specifically, we shall indicate in what manner a particular

form of the method of averaging of Krylov-Bogoliubov-Mitropolski-Diliberto

can be extended to differential equations with hereditary dependence,

For ordinary differential equations, this method is well understood

by most people who are concerned either with the computational aspects or .

the qualitative theory of nonlinear oscillations. In the development of this

method for retarded systems, the basic difficulty lies in the fact that
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motions defined by the solutions of the equations cannot be described
adequately in & finite dimensional space. The proper setting seems to be
in an infinite dimensional space and, in the particular formulation given
below, in & Banach space. To the author's knowledge, Krasovskii [1] was
the first to éxploit such equations in this setting in the extension of
Lyapunov's second method.

The extension of the method of averaging to differential equations
with retardation relies heavily upon the theory of linear equations with
constant coefficients as developed by Shimanov [2, 3] and the author [k].
We will not give the details of the theory of linear systems, but merely
a;pply the results to our problem, proceeding from its application to

specific examples to the more general results.

2. Nota.tiono

Iet us digress for & moment and discuss the equation

(2.1) t) = f(t, x(t), x(t - 1)), rz0,

["«" represents the right hand derivative] from the point of view that is of
interest to us in this paper. If x 1is in Rn (the p-dimensional Euclidean
space), f£(t, x, y) is continucus in its arguments for all t, X, y, and

¢ 1is any continuous function mapping the interval [-r, 0] into Rn, then
for any t o ©One can show that there 1s a function x(to, @) vwhich is defined
on an interval ['l:0 -, b+ A), A>0, coincides with ¢ on [to -r, ,tO]

and satisfies (2,1) for t 2 t_. We call such a function & solution of (2.1)

with initiel value ¢ &t t_. Furthermore, if £(t, x, y) 1s locally
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Lipschitzian in x, y this solution is unique and depends continuously upon
t ° and ¢@. If we find another solution with initial value ¢ at +t o
then the corresponding solutions might behave as in Fig. 1.

The uriqueness property asserts that if two solutions coincide on
any intervel of length r, then they must coincide for all future time, but
two distinct solutions may intersect many times on any interval of length r,
This last remark suggests that the state of time t of a system described
by (2.1) should be the collection of values of the solution on the interval
[t - r, t], or the restriction of x to the interval [t - r, t]. We

designate this restriction by (see Fig. 2). If we let ¢ = ¢([-r, O], RY)

%
be the space of contimuous functions mapping the interval [-r, O] into

R® with the uniform topology, then a solution x(to, @) of (2.1) yields

for each fixed t 2 t o ® mapping of C into C; namely, the mapping

xt(to, ®). Trajectories of (2.1) are then defined as the collection of points
(t, x,(t, 9)) in RxC t st<t +A, as indicated in Fig. 3. Hereafter,

we assume solutions defined for all t 2t - r; that is, A=+ «,

The aboye definition of trajectorlies of (2.1) ylelds a situation which
is apalogous to ordinary differential equations. However, the reader should
realize that the situation here is more complicated. First of all, trajectories
in general are only defined to the right of to and the mepping X, is a
smoothing operator if r > 0. 1In fact, for any t o the mapping
xt(t o @) takes closed bounded subsets of C into compact subsets of C. This
shows that xt(t o? @) cannot be a homeomorphism for r >0 even if it is

one-to.one, Secondly, the mapping xt(t o? cp) need not be one-to-one even when
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the uniqueness property holds. In fact, for the scalar equation
t) = x(t - r) (2 - x(t)),

the solution x(0, @) corresponding to an initial function ¢ with ¢(0) =1
is such that xt(O, ¢) =1 for tzr. Therefore, a subset of C([-r, 0], R)
which is the translate of a subspace of codimension 1 is such that the

corresponding trajectories all coincide after r units of time.

If we let F(t, ¢) be & functional defined on [0, w) X C imto R,
then a rather general hereditary functional-differentisl equation can be

defined as

(2.2) 2(t) = K¢, x,)

where x, is the restriction of x to the interval [t - r, t]. The
discussion below is concerned with these more general equations, but we
devote mich of our time to more specific types, Equations (2.2) are

certainly more general than (2.1) and certainly include (2.1) with the functional
F defined by

Kt, x) = £(t, x(¢t), x(t - r)).

3« A convenient coordinate system,

In this paper, we are interested in the osclllatory properties of
perturbations of linear equations with constant coefficients, In ordinary

differential equations experience has shown an understanding of oscillations
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in perturbations of linear equations with constant coefficients is most
easily accamplished by the introduction of & coordinate system which exhibits
in an explicit manner the behavior of the unperturbed equation on the
subspaces which correspond respectively to the eigenvalues which positive
real parts, zero real parts and negative real parts. -In this section, we
indicate how this same end can be accomplished for hereditary functional-

differential equations.

We will first discuss the procedure for the simple equation

(3.1) (t) = -au(t - 1), =72, r>0,
and the perturbed equation
(3.2) 2(t) = -ax(t - r) + ef(t, x,)

where x  denctes the restriction of x to the interval [t - r, t]. ILater

we state a result for a more general equation.

at

If a function e is a solution of (3.1), then A must satisfy

the characteristic equation
(3.3) A= e

Since axr = 1r/2, it is not difficult to show that the roots of (5.3) all have
negative real parts except for two which are equal to + io. Furthermore,

every periodic solution of (3.1) must be of the form

(3.4) a singt + b cos at
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for some constant a and b and every solution of (3.1) is exponentially

asymptotic to a function of the form (3.4) as t — .

Now let us interpret these remarks in the space C. Iet u be a

periodic solution of (3.1). Then for -r s g =0,

u,t(e)=u(t+9)=asina(t+9)+beosa(t+9)

=(acosagt -bsinat) sinag + (a sin ot + b cos at)cos o

%y, (£)p,(0) + ¥,(t)o,(6)

where we have defined
(305) ‘Pl(e) = sin 9, ¢2(9) = cos B, -r=9 =0,

and Y9 Yo are the corresponding coefficients of these functions.

Kow @, ¢, &are linear independent elements of C and thus generate

a two-dimensional linear subspace P of C; that is,
(3.6) P=(pecC:qg=sp +bp, 8 b reall

What the above computations have shown is that all of the periodic solutions of

(3.1) must 1ie in P, Also, it can be shown that apy solution of (3.1) approaches P

exponentially a8 t — « The paths in P are closed curves and the motion in
time is described by yl(t) s yz(t). Notice that yl(t), ya(t) satisfy the
ordinary differential equatiors

% = o,

Y2

i
8
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If we could find another subspace Q of C {(wkich necessarily
must be infinite dimensional) which is positively invariant under the
solutions of (3;1) and complementary to P in the sense that for every
¢ in C there exisi{ unique elements Pp in P, QQ in Q such that
Q= ?P + (pq, then pictorially the motions in € would be as shown in
Pig. k.

The existence of such a space Q follo.ws from the general theory of
linear operators since P is an eigenspace of the semigroup of bounded linear
operators U(t), t 2 0, defired on C by U(t)p = ut(cp), where u(p)
is the solution of (3.1) with initial function ¢ at O. On the other hand,
1f Q can be described analytically, then we will be in a position to
intioduce a coordinate system in C which will provide a natural means of

extending perturbation theory.

This is accomplished by means of the equation

G.7) ¥(s) = av(s + 1)

"adjoint™ to (3.1) with respect to the bilinear form

0
(3.8) - (¥, @) = W0)p(0) - [ we + r)p(e)ae

r

defined for all ¥ in ¢([0, r]l, R) end ¢ in C([-r, O], R). This bilinear
form has the property that if v 1s a solution of (3.7) defined for s 2 0

and u 1is a solution of (3.1) defined for t 2 O, then

(v, u,) = constant for t z O,
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If A 1is a column vector of dimension k whose elements a,

belong to C([O, r], Rn) and B 1s a row vector of dimension m whose
élements b, belong to C([-r, 0], R"), then we let (A, B) denote the

J)th

k X m matrix whose (i, element is given by (ai, bJ).

Equation (3.7) also has two linearly independent periodic solutions
sin @ 8, cos @ 5 defined for & In (-m, ), Define ¥, ¥, in
c(fo, r], R) by

(3.9) *1(9) = gin a9, #2(9) =cosag, OS@=r
¥ :

and !':(*1: *2)) !=* ) °=(‘p1: ¢2)°
2

Then a simple computation shows that the matrix

TR

)

and it 1s nonmsingular, It is convenient to define

1
(r, 9% (v, o)) = 3 ( T
2

!*=!(!, o)t =y —E—(

2

iy
RS

since

*
(v, ¢) = I, the identity,




We are now in a position to introduce a coordinate system in C and

define the space Q complementary to Pe In fact, for any ¢ in C we let

- %
@ =% +9, c=(y, o),

which gives a unique decomposition of every el:: ¢ in C, The subspace Q
complementary to P 1is defined by

%* A

Q={ in c: (¥, o) =0}

For the 11_rt_;egra.l representation below, it is necessary to extend the definition of
'Q to piecewise continuous functions, It is clear that this is possible and our
decomposition is yalid in this larger space, Hereafter, Q will denote this set.

If x 1s a solution of (3.2) with initial value @ at ¢, o in (- ), and

(3.10) x, =oy(t) +X,, @ =0+,

then y(t), %, must satisfy

§(t) = By(t) + ¥ (0) 2(oy(t) +%.), (o) =D,

(3.11) " _
X, =u () te !c v, (%) (ey(r) + X )ar

wherxre
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0 -
B= ,
a 0
/2
!*(0) = .._g_ 1
'y

?, Xo are in Q, u(¥) 1s the solution of (3.1) with initial value ¥ at
x(6) =0, -rs0s0, X(0)=1I, the identity. If § is in Q, then

there are positive K, @ such that
(3.12) @) = xe"gl,  t=zo.

This relationship expresses more precisely our stability property of the set

P mentioned before.

Now let us see what this coordinate is like for the general linear

equation,

0
(3.13) a(t) = f [an(e)Iu(t + o),

where 17 1is an n X n matrix whose elements are real functions of bounded

variation, and the perturbed equation

.0
(3.14) t) = J [an(e))x (t + o) + ef(t, x,).

r
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We wish to indicate how a coordinate system can be introducéd into C 1in such
a way as to obtain a set of equations equivalent to (3.14) which is of the form
(3.11) with u (§) satisfying (3.12) and the corresponding matrix B having
eigenvalues which coincide with the characteristic values of (3.13) which have
real parts 2 O, The characteristic values of (3.13) are the roots of the

equation

0 pY:]
(3.15) det [2I - [ [an(e)]e™] =0,
-

end to any characteristic value, X, there is a solution of (3.13) of the

At

form e b for some b and all t in (-, o).

As 18 to be suspected from the previous discussion, a basic role is

played by the equation*

0
(3.16) Hs) =- [ [an(o)1v(s - o)

"adjoint" to (3.13) with respect to the bilinear form,

=T

T A
(3.17) (v,9) = v (0)p(0) - [ Io v (¢ - e)lan(e)lo(e)at,

defined for a1l y in ¢([0, r], "), @ in C([-r, O], R®). The

characteristic values of the adjoint equation are the roots of the equation

0
(3418) det [ - [ [an7(0)1e*] = 0,
-T

*If A is a matrix AT denotes the transpose of A.
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and to each such root, ), there is a solution of (3.16) of the form
e b for some constant vector b and all s in (-2, ©). Notice that

the solutions of equations (3.15) and (3.18) are the same,

Suppose X j,ees,), 8re the characteristic values of (3.13) with
real parts 2 O. There are only a finite mumber, say m, of linearly
independent solutions of (3.13) of the form z‘;:l P J(t)eth where the »
are polynamials. Iet & = (@yjeee,@ ) vhere @ ,e.., @ are the
restrictions of these functions to [-r, O]. Similarly, there are only m

B W
linearly independent solutions of (3.16) of the form 2§=1 qJ(s)e J where
the q, are polynomials. Let ¥ = col (#l,...,irm) vwhere V¥,,...¥ are

the restriction of these functions to [0, r].

It follows directly from the differential equations that there is a

square matrix B with only the eigenvalues xl,... ,)Lk such that
(3.19) (o) = Q(O)em, -r =9 =0,

Furthermore, one can show (see Hale [4]) that the matrix (¢, ¢) is

nonsingular and, therefore, by a change of the basis ¥, one can take
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(¥, ®) to be the identity, Finally, the transformation (3.10) with
®, Y as sbove applied to (3.14) yields an equation of the form (3.11) with

v (§) satisfying (3.12) and the mstrix B given by (3.19).

k., Perturbation theory.

It was indicated in the previous section that there is a transformation

x = oy(t) + X, it in Q, which takes the general system (3.14) into an

‘equivalent system of the form

3(t) = By(t) + e¥ (0)2(t, oy(t) + %), ¥(o) =0

(%.1) %

xo=u (§)*+eS u (X)2(r, oy(r) + X )ar
: (4

where @ =¢b + @, @ in Q, the elgenvalues of B have nonnegative real

parts, u(p) 1is the solution of (3.13) with initial values ¢ at O and
la, @0 = xeg], =20, k>0, a>0,

for any ‘¢ in Q.

Equations (4.1) are now in & form which is very similar to that which
is encountered in the theory of oscillations in ordinary differential equations.
One can show that any solution of (4.1) which is bounded on (-0, @) must be
of such & nature that it = 0(e¢) as € -0, Consequently, if our analysis is
based upon an approximation procedure which can be jJustified to be correct by
investigating only the terms of order €, then the basic problem lies in the

investigation of the ordinary differemtial equation
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(k.2) §(t) = By(t) + €X' (0)2(t, oy(t))s

The analysis of (%.2) is well understood and usually ﬁroceed.s by the in-
troduction of convenient combimations of polar coordinates and rectangular
coordinates_ and the application of averaging procedures and successive
approximations,

For simplicity, let us make the assumption that all the characteris-
tic values of (3.13) have nonpositive real parts. Then B in (L.1) has
all eigenvalues purely imaginary and a combination of polar and rectangular
changes of coordinates in the components of y (see the examples in
section 5 for the types of coordimates involved) leads to a set of equations

of = form

l =d +e8(t, ¢ p, ;t)

(k. 3) b

€R(t, ¢, P, ;t)

t
o

vhere { 1s a p-dimension vector, p is & g-dimensional vector, Et
is an element of the Bamach space C. The vector d 1is a constant vector
with positive components and the functions 6, R, F are multiply periodic
in tbe vector ¢.

Assume that the functions 6, R, F with arguments t, {, p, 3 have

continuous second derivatives with respect to ¢, p, ¢ and are almost
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periodic in t uniformly with respect to ¢, p, @ in some set. ILet
L+ =(4 +7, ooep §P+T)

and assume that

T det
(ko) Un [ R(t+7, ¢ +7,p,008 = R (p)
T oo 0 °

is independent of t, {. We define the averaged equations associated with

(k.3) to be the equations

(k.5) p =<R(p).

Notice that the averaged equations (L4.5) are obtained from R(t, {, p, O)
and, therefore in a specific problem, they arise from an investigation of

the ordinary differential equation (L.2).

Theorem k.1, If system (4.3) eatisfies the conditions enumerated above and

S ———

if there exists a vector p, such that Ro(po) = 0 and the eigenvalues of
the matrix BRo(po)/bp bave nonzero real parts, then there exists an € >0
and functions g(t, {, €), h(t, {, €), 0Osese, g in Ry, b in ¢
g(t, ¢, 0) =p, RB(t, ¢ 0) =0, multiply periodic in { and almost
reriodic in t such that the set S, 0 =€ =€, defined by

: set(t; L, Py 7‘-’)3 p = g(t,g,e), 3" h(t,¢,¢),

<t <oy o< QJ <®, J1,2, «oo, P}
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i8 an integral mgn:!.fold of system (4k.3). If the functions 6, R, F

are independent of t (or periodic in t of period ®), then the func-
tions g, h are independent of t or periodic in t of period w).
Furthermore, if all eigenvaluwes of 3R (p )/Op have negative real parts,
B_ 1s asymptotically stable for 0 <€ £€¢_ and if one eigenvalue has

€ (<]
a positive real part then Se is unstable for 0 <€ = €50

We merely give an indication of the proof of this theorem since it
i1s so analogous to the proof for the case or ordinary differential equa-
tions given in Bogoluibov and Mitropolski [5] and Hale [6].

In [6, Ch. 12], it is shown that there is a function w(t, ¢, p, €),
multiply periodic in { and almost periodic in t such that the trans-

formation

poptevw(t, t, p, €)

applied to the equation P =€ R(t, ¢, p, 0) ylelds & new equation of the
form p=¢€ Ro(p) +¢€ Ri(t, &, p, €) where Rl(t, t, py €) 18 zero for
€ = 0. Consequently, if this transformation is applied to (4.3), we obtain

& system of the fom

§=d+€ el(tJ & Py ;t’ €)

p=¢ RO(P) + € Rl(t: L,ps€) + € Ra(t: ;,p,;t,e)
t
;t = ut_,@) +e€ [ %_T(io)Fl(T:g:P,ir:G)dT
o
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where 81, Fl are the same types of functions as 6, ¥ and
Rl(t) & py, 0) =0, Rz(t: £,p,0,€) = 0O, lRa(t: S,p:?be) - Rz(t) E:P:?:e)l =
K|® - ¥]| for some constant K and p, 9 1n a bounded set.

One now proceeds in & mamner completely analogous to that given in
[5], [6] to show that the functions g, h mentioned in the theorem are the
fixed points of an imtegral operator. The stability of the integral mami-
fold must be investigated separately and is easlly supplied using the
ideas developed in [8] in connection with a saddle point for functional-
differential equations.

As in [5], [6], one can also prove

Theorem 4.2. Suppose the averaged equations (4.5) bave a nonconstant
periodic solution p = po(t) of period T such that gq-1 of the characteris-
tic exponents of the associated linear variational equations have nonzero
real parts. Then there exists an € >0 and functions g(t, & ¥, €),

n(t, {, ¥, €), Osesec, g in R, b in C, &t & ¥, 0) =

o°(y), 0s y=T, nh(t, ¢, ¥y, 0) = 0, multiply periodic in §, periodic

in ¥ of period T and almost periodic in t such that the set. Se»

O=€¢ = eo defined by

Se = [(tag;P:;’): p = g(t,8,v¥,€), ES: h(t,8,v,€),
~o<t <ew -w<‘§J<w, J=12, «se, p3 0=y =T}

is an integral manifold of system (4.3). If 8, R, F are independent of

t (or periodic in t of period ), then the functions g, h are
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independent of t (or periodic in t of period o). Furthermore, the
stability properties of Se are the same as those of the periodie
solution p°(t) of (4.5).

We now state some important corollaries of these theorems before

turning to specific examples., Consider the equation
7v,86) x(t) = e£(t, x;)
where € >0 1s & parameter, f£(t, ¢) 1s almost periodic in t uniformly

with respect to ¢ in some subset of C([-r, 0], R"), and has & con-

tinuous second Frechdt derivative with respect to @. ILet

(%.7) £,(¢) = lim % ITf(T, Q)dr. |
Tow- 0 f

Halanay [7] has discussed, for small €, some of the relationships between

the solutions [on the interval (0, »)]l, of x(t) = efo(xt) and the solu-

tions of (4.6) for the case in vhich the retardation interval is of order

€. We now show that Theorems 4.1 and 4.2 imply that his results and even

more are valid without any restriction on the retardation intervel. 1In

fact, we can prove the following two theorems. In the statement of these

theorems, y sometimes denotes & vector in n-dimensional Euclidean space

and sometimes a vector of constant functions in C([-r, 0], K°), but it

18 clear from the context which meaning is implied. The averaged equations

of (4.6) are then defined to be the ordinary differential equation
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(4.8) § = er, ()

Theorem 4.3, If the averaged equations (4.8) have an equilibrium
point ¥ o such that the matrix of coefficients of the linear variational
equations has no eigenvalues on the imagimary axis, then, for € suffie
ciently small, (4.6) has a unique almost periodic solution x = g(t, €)
in & neighborhood of x =y, g(t, 0) = ¥,» and the stability properties

of g are the same as the stability properties of Ve

Theorem 4.4, If (4.8) has a nonconstant periodic solution
y= y(o)(t) of period T, such that the linear variation equation has
n-1 of 1ts characteristic exponents not on the imaginary axis, then, for
€ sufficiently small, there exists a function g(t, ¢, e)‘ in C, almost
veriodic in t uniformly with respect to {, periodic in { of period
T, &(t, ¢ 0) = yg(o), yg(o)(6)= y(°)(§ + a); -r S 8 = 0, such that the

suface 8, in C X (=, =) defined by

-8 = (e, t): p=g(t, L, €), 0T, =<t <)

is an integral manifold of (4.6). Furthermore, S  1s unique ina neigh-
borhood of S = (g, t): o@= yg(o), 0=2{sT .»<t<wo} and has
the same stability properties as S . If f in {4.6) 18 independent of
t, then g 1s independent of t, and if f is periodic in t, then

g 18 periodic in t with the same period.
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To show that these results are consequences of Theorems 4.1 and
k.2, we proceed as follows. For any ¢ in C([-r, 0], B®), the de-

composition
¢=b+T

is unique if b is the constant function whose valve is ¢(0). If, in
(4.6),

xt = Y(t) + xt
then

F(t) = eg(t, y(t) +x,)

t
x, =u (9 +e fu v, (& )2(r, y(v) + X )av

la (DI = 23, t =0

for some positive K, a. This last relation is obviously true in this case
since “t@ =0 forall ¢ and t 2 r. System (4.9) is a special case

of (4.3) and one obtains Theorems k.3 ard 4.4 from Theorems 4.1 and 4.2,

5. Bome specific examples.

Iet us first discuss the oscillatory properties of equation (3.2),

namely, the equation



x(t) = -ox(t - r) + ef(t, x;)
(5.1)

ar = %/2, € >0.

We have seen in section 3 that this equation is equivalent to the
system (3.11), that is, the equation

§, =, + emiE(t, oy + X,)
§, = oy + 22t oy + %)
(5.2)

t :
T, = vy (@ + ¢ [ u_(X)2(r, oy(v) + X )ar
g

#(0) = (9,(8), ®(6)) 9ef(5in 4o, cos af), -r S0 S0

41
2 1
y = 3 'J- = 2.
Yo 1+ Il?
If we let
y=°P sin af
(5.3)

Y, = ~p cOB af

then system (5.2) becomes

* 2 -—
§=l+§-§—(1rfcosa§+2fsina§) aef 5 4.

- Ly Py xt)
(5.8) p = en26re sin af - 2f cos at) “E° € RE; & £y Xy)

t
Xy =uy (@) +e fcut_,‘(io)f(r,- ey(v) + X )ar
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vhere f = £(t, ¢y +i’t) and y is given in (5.3).
If the function f 18 almost periodic in t wuniformly with res-
pect to the other arguments, then the averaged equations for this parti-

cular case are

b= e r (o)

R,(p) = . lim ,_-El- ]z |.12[1rf sin ol + T) - 2f cos a(f + 7)ldr
- 0

(5.5) £ =2(t+1, plosin a(f +7) - @, cos a(t +1)1)

¢,(6) = 8in a8, ¢,(6) =cos af, ~r=6=0,

vhere we always assume that this limit is independent of t, .
Fotice that equation (5.5) are the same equations that are obtained
by introducing the polar coordimate transformation (5.3) to the ordinary

differential equation

2
’1 = -y, + mEp f(t: ¢y)
(5.6) >
and then taking the average.
Iet us now .. - same specific functions f in (5.1) to show that

important informs.:. s obtalned by this method.

Example 5,1(Pinney 5] £ = - yx(t-1) + Bx3(t-l)', a=1w/2, r=1.
Since x(t-1) = #(-1)y(t) = -y, (t) = - sin(n/2), 1t 1is easy to

check that the average Ro(p) in (5.5) is




-23-
2
Ry(p) = Rro(1 - 3,

where K is a positive constant, and the averaged equations (5.5) are

2
B = ekyp(1 = %’r—)-

If y8 >0 the averaged equation has an equilibrium point Py = WB_B

which is asymptotically stable if y > 0 and unstable if y < 0. Con=
sequently, for € >0 and sufficiently small, Theorem 4.1 asserts for

¥B > 0 the existence of functions g(¢, €), h(¢, €) (these functions

are ‘-lcpendent of t since f iB)’ g(g;, 0) =JF(75E, h(t, O) = O,

pe in { of period 2m/a such that 8, = ((t, ¢, p, P

p=2:il€), P=h(l, ), ~o<t<w, 0S5 {s2r/a} is an integral
manifold of (5.4) which is stable for 7 < O. From (3.10) and (5.3), this
implies tmtT;:[(t, ®: 9= (psin &t - @, cos at)e(t, €) +n(L, €),

0 £ ¢ s 2r/a} 1is an integral manifold of our origiml system. Such a
cylinder Te in R X C obviously corresponds to & periodic solution of our
system which is stable if y >0 &and unstable if y <0 and has an ampli~
tude approximetely equal to JET_/BE. The approximate period o is obtained
by solving the equation

= k/3B,

§ =1+ ep,2('r sin w{/2 - §)°351n31rg[2), Po

and d.etémining .® 80 that ¢(t +o) = §(t) + 2n/o.
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It is interesting to note that the second order system (5.6) for
this example is actually equivalent to a second order scalar differential
equation. The method of averaging should then allow one to obtain an
"equivalent" linear second order equation in the sense of Krylov-Bogoliubov.
This should in turn lead to methods which will yield important information
about equations with retardation when € 1s not small -~ describing func-

tions, etc, So far, this has not been exploited.

Example 5.2, Consider the equation

(5.7) 2(8) = = @+ en(t) k(s - (1 - ex*(v))

vhere v 18 almost periodic in t.

This is & special case of (5.1) with a =7/, r=1, and
T 2 2
f=3x (t)x(t = 1) - n(t)x(t = 1) + en(t)x"(t)x(t ~ 1).
Using the fact that

x(t) = 8(0)y(t) = y,(t) = - p cos (w¢/2)

x(t-1) = #(-1)y(t) = - y;(t) = - p sin(wt/2)

the averaged equation (5.5) becomes




2D -

T
b= euap(no -§ 6°), T, = Tlim -Tl- fo n(t)at
provided

T &
1im %f a(t) cos w(L + %) at = 0.
0

T cos (¢ + %)

Consequently, if % >0 and € >0 1is sufficiently small there exists
a stable integral manifold of solutions of (5.7) whose parametric repre-
semtation in C is almost periodic in t &and periodic in ¢ and for

€ =0 1is given by

G sin 1r§/2

¢ ’ Py = J8;;71r-

-, cos wt/2

If q(t) 1s independent of t, then the parametric representation
of the integral manifold is independent of t and one obtains a nonconstant
periodic solution of (5.7) with amplitude approximately J-B_n/— . Jones [10]
has discussed periodic solutions of (5.5) with 1 independent of t and

even more general equations,

Example 5.3, Consider the system

£)(5) = x,(t)

(5.8) R .
ia(t) = = xl(t) + e[l «x,“(t -m) ]xa(t)
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vhere >0, r20, € >0 are parameters. For r = 0, this is
van der Pol's equation. By using the preceding theory, we will investi-
gate the existence and stability of limit cycles of (5.8) for € small,

If ¢, @ &re the vectors in c(l-r, O], R2) defined by

cos b ésin o8
@ (o) = 1 %(6) , =rseso
- 8in a8 cos (@

and ¢ = (@ @) then the transformation

xt = oy(t) + ;t’ Y(t) = x(t): y = » X =
applied to (5.8) yields the equivalent system

=9,

(5.9) ¥, = oy, +€ll - (3 cos o - i— v, sin ar + %, (-r))?ly,(t)

t
%, = 9 (D +e [ u_(F)F(), )
[+

where “1-,(;) bas the same meaning &s in the previous sections and F is a
two-vector whose specific form is of no particular interest here.
If we introduce the polar coordinates
Yy =9 sin af

¥, = pa cos at
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into (5.9) and set X = 0, we obtain
t=1-:5sin2agll - pPlstn aff - ))°]

2a

$=¢p coszag f1- p2[sin a(t - r)}2]
The averaged equation is

B =52 [1-3 -3 cos 2om)p®l.

This equation has an equilibrium point p_ = 2/, ¥ =1~ (cos 20r)/2 >0
for every value of r and the linear variational equation relative to p o
i8 p = - 2ep. Consequently, Theorem 4.1 implies as in Example 5.1 the
existence of a stable periodic solution of ‘(5.8) with amplitude approxi-
mately ~f27';'.

For physical examples of retarded equations and the importance of

oscillatory phenomens, see Chapter 21 of N. Minorsky [11].

s b
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